Equation with Fibonacci coefficients.

https://www.linkedin.com/feed/update/urn:li:activity:6746091436783001600

Solve for $x, y \in \mathbb{R}$ $\frac{F_{2022} \cdot x + F_{2021} \cdot y}{x + y} = \varphi^{2020}$

where F_n is *n*-th Fibonacci's number and $\varphi = \frac{1 + \sqrt{5}}{2}$ (the golden's number). Solution by Arkady Alt, San Jose, California, USA. Since $\varphi^{n+1} - \varphi^n - \varphi^{n-1} = 0$, $\forall n \in \mathbb{N}$ (because $\varphi^2 - \varphi - 1 = 0$) there are unique $c_1, c_2 \in \mathbb{R}$ such that $\varphi^n = c_1F_n + c_2F_{n+1}, n \in \mathbb{N} \cup \{0\}$. Indeed, $\varphi^0 = 1 = c_1F_0 + c_2F_1 \iff c_2 = 1$, $\varphi^1 = c_1F_1 + c_2F_2 \iff c_1 = \varphi - 1$ and

for any $n \in \mathbb{N}$ assuming $\varphi^n = (\varphi - 1)F_n + F_{n+1}, \varphi^{n-1} = (\varphi - 1)F_{n-1} + F_n$ we have $\varphi^{n+1} = \varphi^n + \varphi^{n-1} = (\varphi - 1)F_{n-1} + F_n + (\varphi - 1)F_n + F_{n+1} = (\varphi - 1)(F_{n-1} + F_n) + (\varphi - 1)(F_n + F_{n+1}) = (\varphi - 1)F_{n+1} + F_{n+2}.$

Thus, by Math Induction, $\varphi^n = (\varphi - 1)F_n + F_{n+1}, \forall n \in \mathbb{N} \cup \{0\}$ and, therefore, for any $n \in \mathbb{N}$ we have $\varphi^{n-1} = \frac{\varphi - 1}{\varphi} \cdot F_n + \frac{1}{\varphi} \cdot F_{n+1} = \frac{F_{n+1} \cdot x + F_n \cdot y}{x+y}$, where $x = \frac{1}{\varphi}, y = \frac{\varphi - 1}{\varphi}$ and, therefore, $\frac{x}{y} = \frac{1}{\varphi - 1} = \varphi$. In particular $\frac{F_{2022} \cdot x + F_{2021} \cdot y}{x+y} = \varphi^{2020} \iff x = \frac{1}{\varphi}, y = \frac{\varphi - 1}{\varphi}$.